More on random graphs and discrepancy for directed graphs
نویسنده
چکیده
Consider the following problem: Does there exist a graph with large girth and large chromatic number? The girth of a graph is the length of the shortest cycle and the chromatic number is the minimum number of colors needed to color the vertices of the graph so no two adjacent vertices have the same color. These two conditions seem contradictory, intuitively to have high chromatic number we need something dense, i.e., clusters of vertices all close to one another. On the other hand to have large girth means that locally everything looks like a tree (i.e., no local cycles) and hence locally the graph is 2-colorable. An amazing result of Erdős is that such graphs exist with girth at least g and chromatic number at least k for any positive g and k. We now give a proof using random graphs (this proof is from [4]).
منابع مشابه
Discrepancy inequalities for directed graphs
We establish several discrepancy and isoperimetric inequalities for directed graphs by considering the associated random walk. We show that various isoperimetric parameters, as measured by the stationary distribution of the random walks, including the Cheeger constant and discrepancy, are related to the singular values of the normalized probability matrix and the normalized Laplacian. Further, ...
متن کاملOn independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کاملIndependent domination in directed graphs
In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...
متن کاملTwin minus domination in directed graphs
Let $D=(V,A)$ be a finite simple directed graph. A function$f:Vlongrightarrow {-1,0,1}$ is called a twin minus dominatingfunction (TMDF) if $f(N^-[v])ge 1$ and $f(N^+[v])ge 1$ for eachvertex $vin V$. The twin minus domination number of $D$ is$gamma_{-}^*(D)=min{w(f)mid f mbox{ is a TMDF of } D}$. Inthis paper, we initiate the study of twin minus domination numbersin digraphs and present some lo...
متن کاملSigned total Roman k-domination in directed graphs
Let $D$ be a finite and simple digraph with vertex set $V(D)$.A signed total Roman $k$-dominating function (STR$k$DF) on$D$ is a function $f:V(D)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N^{-}(v)}f(x)ge k$ for each$vin V(D)$, where $N^{-}(v)$ consists of all vertices of $D$ fromwhich arcs go into $v$, and (ii) every vertex $u$ for which$f(u)=-1$ has a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005